首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12718篇
  免费   849篇
  国内免费   4459篇
电工技术   148篇
综合类   1057篇
化学工业   2714篇
金属工艺   359篇
机械仪表   778篇
建筑科学   5094篇
矿业工程   492篇
能源动力   385篇
轻工业   471篇
水利工程   287篇
石油天然气   497篇
武器工业   1078篇
无线电   401篇
一般工业技术   2986篇
冶金工业   228篇
原子能技术   181篇
自动化技术   870篇
  2024年   7篇
  2023年   110篇
  2022年   207篇
  2021年   320篇
  2020年   273篇
  2019年   288篇
  2018年   272篇
  2017年   573篇
  2016年   568篇
  2015年   546篇
  2014年   750篇
  2013年   1065篇
  2012年   887篇
  2011年   1230篇
  2010年   957篇
  2009年   1118篇
  2008年   1051篇
  2007年   1127篇
  2006年   1164篇
  2005年   1187篇
  2004年   1087篇
  2003年   707篇
  2002年   412篇
  2001年   264篇
  2000年   267篇
  1999年   265篇
  1998年   265篇
  1997年   203篇
  1996年   147篇
  1995年   147篇
  1994年   107篇
  1993年   97篇
  1992年   67篇
  1991年   58篇
  1990年   49篇
  1989年   42篇
  1988年   37篇
  1987年   24篇
  1986年   19篇
  1985年   12篇
  1984年   7篇
  1983年   6篇
  1982年   10篇
  1981年   3篇
  1980年   6篇
  1979年   4篇
  1976年   2篇
  1955年   4篇
  1954年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(12):16649-16655
Effective adhesion between AlOx and SiOx is important for protective coatings and high-k films under extreme operating conditions. Here, we study the chemo-mechanical behavior of the AlOx/SiOx interface and its delamination mechanism using all-atom reactive molecular dynamics simulations. The structure of the interface is examined by the formation of bridge oxygen and the distribution of nanopores. The cleavage of ionic bonds during delamination and the resulting adhesion strength of the system are quantified using pull-out simulations. The results reveal the dependence of the nanopores and ionic bond formation on the oxide structure. The ionic bond density at the interface increases as the oxidation of the aluminum surface proceeds, which directly increases the adhesion strength with SiOx. In particular, the global coordination distribution in the homogeneously grown oxide inhibits the formation of nanopores inside the aluminum substrate and contributes to extremely high adhesion strength. This reveals a fundamental relationship between physicochemical parameters and engineering mechanics for hetero-oxide structure design.  相似文献   
2.
The coupling of reaction and diffusion between neighboring active sites in the catalyst pore leads to the spatiotemporal fluctuation in component concentration, which is very important to catalyst performance and hence its optimal design. Molecular dynamics simulation with hard-sphere and pseudo-particle modeling has previously revealed the non-stochastic concentration fluctuation of the reactant/product near isolated active site due to such coupling, using a simple model reaction of A → B in 2D pores. The topic is further developed in this work by studying the concentration fluctuation due to such coupling between neighboring active sites in 3D pores. Two 3D pore models containing an isolated active site and two adjacent active sites were constructed, respectively. For the isolated site, the concentration fluctuation intensifies for larger pores, but the product yield decreases, and for a given pore size, the product yield reaches a peak at a certain reactant concentration. For two neighboring sites, their distance (d) is found to have little effect on the reaction, but significant to the diffusion. For the same reaction competing at both sites, larger d leads to more efficient diffusion and better overall performance. However, for sequential reactions at the two sites, higher overall performance presents at a smaller d. The results should be helpful to the catalyst design and reaction control in the relevant processes.  相似文献   
3.
In this work, coupling effects of water content, temperature, oxygen density, and polytetrafluoroethylene (PTFE) loading on oxygen transport through an ionomer thin film on a platinum surface in a catalyst layer of a proton exchange membrane (PEM) fuel cell are investigated using molecular dynamics approach. Taguchi orthogonal algorithm is employed to comprehensively analyze the coupling effects in a limited number of cases. It is found that the effect of operation temperature is the weakest among the four factors, which has the smallest effect index 14.4. Coupling effects including the PTFE loadings on the oxygen transfer through the ionomer thin film is uncovered. Less PTFE loadings should be beneficial for the oxygen transfer. The chemical potential gradient is considered as the major driven force for the oxygen transport through the ionomer thin film, and oxygen density is the dominating factor, significantly affecting the chemical potential in the thin film.  相似文献   
4.
Significant developments have been made in the past few decades for lanthanide(Ln)ions doped fluorosilicate glass-ceramics(Flusi-GCs).As novel generation of luminescence materials with a wide range of applications,Flusi-GCs as a single host combine the advantages of glass and ceramics/crystals as well as fluorides and silicates.In this review,the chemical design principles and experimental procedures of Flusi-GCs are summarized in detail.Flusi-GCs are categorized as those containing PbxCd1-xF2,RF3(R=Y,La,Gd),MF2(M=Ca,Sr,Ba),xMF2-yRF3(R=Y,La-Lu),mAF-nRF3(A=Li,Na,K),KTF3(T=Zn,Mn)and K2 SiF6 nanocrystals(NCs).Theoretical breakthroughs mainly by molecular dynamic(MD)simulation have been recapitulated as efficient routes for composition-design,nano-crystallization-prediction,and performance-optimization of Flusi-GCs containing target fluoride NCs.Essential research progresses pertaining photonic applications have been made in random lasers,communication amplifiers,optical fibers,spectral converters,white light-emitting-diodes(WLEDs),and thermal sensors.In the end,we propose three future research directions for Flusi-GCs.  相似文献   
5.
Pro-inflammatory cytokines like interleukin-1β (IL-1β) are upregulated during early responses to tissue damage and are expected to transiently compromise the mechanical microenvironment. Fibroblasts are key regulators of tissue mechanics in the lungs and other organs. However, the effects of IL-1β on fibroblast mechanics and functions remain unclear. Here we treated human pulmonary fibroblasts from control donors with IL-1β and used Atomic Force Microscopy to unveil that IL-1β significantly reduces the stiffness of fibroblasts concomitantly with a downregulation of filamentous actin (F-actin) and alpha-smooth muscle (α-SMA). Likewise, COL1A1 mRNA was reduced, whereas that of collagenases MMP1 and MMP2 were upregulated, favoring a reduction of type-I collagen. These mechanobiology changes were functionally associated with reduced proliferation and enhanced migration upon IL-1β stimulation, which could facilitate lung repair by drawing fibroblasts to sites of tissue damage. Our observations reveal that IL-1β may reduce local tissue rigidity by acting both intracellularly and extracellularly through the downregulation of fibroblast contractility and type I collagen deposition, respectively. These IL-1β-dependent mechanical effects may enhance lung repair further by locally increasing pulmonary tissue compliance to preserve normal lung distension and function. Moreover, our results support that IL-1β provides innate anti-fibrotic protection that may be relevant during the early stages of lung repair.  相似文献   
6.
《工程(英文)》2020,6(1):10-19
Neospora caninum (N. caninum), a cyst-forming protozoan parasite, is a major cause of bovine abortions and neonatal mortality worldwide. N. caninum has a broad intermediate host range, and its sexual cycle occurs exclusively in canids. Another species of Neospora, Neospora hughesi (N. hughesi), has been identified and causes myeloencephalitis in horses. Although molecular epidemiology studies are in their infancy, the 18S ribosomal RNA (rRNA) and ITS1 regions within the small subunit ribosomal RNA (ssuRNA) and an N. caninum species-specific DNA probe (pNc5) have been used extensively to differentiate Neospora from other closely related apicomplexan parasites. While these repetitive regions have higher sensitivity and specificity than housekeeping or antigen genes, they suffer from low discriminatory power and fail to capture intra-species diversity. Similarly, although multiple minisatellite or microsatellite marker studies have shown clear geographic substructures within Neospora, strains are often misclassified due to a convergence in the size of different alleles at microsatellite loci, known as homoplasy. Only one strain, N. caninum Liverpool (Nc-Liv), has been genome sequenced and compared with its closest relative, Toxoplasma gondii (T. gondii). Hence, detailed population genomics studies based on whole-genome sequences from multiple strains worldwide are needed in order to better understand the current population genetic structure of Neospora, and ultimately to determine more effective vaccine candidates against bovine neosporosis. The aim of this review is to outline our current understanding of the molecular epidemiology and genomics of Neospora in juxtaposition with the closely related apicomplexan parasites Hammondia hammondi and T. gondii.  相似文献   
7.
An innovate constant volume flow meter (ICVFM) using AAO leak element was developed, and then applied to measure the pumping speed of dry vacuum pumps. The AAO leak element was calibrated with dynamic differential pressure decay method. The results imply that the conductance of AAO leak is inversely proportional to the square root of the molecular mass, and remains unchanged with pressure varying from vacuum to atmosphere. Then the pumping speed was measured by a simple test system. In the end, the uncertainties of calibrating AAO leak element and measuring pumping speed were considered to confirm the measurement capability. The newly developed flow meter enables flow measurements at pressures ranging from vacuum through atmospheric pressure, which has potential application in the semiconductor industry.  相似文献   
8.
Preoperative chemoradiation therapy (CRT) is becoming the standard treatment for patients with locally advanced rectal cancer. However, individual differences in response to treatment range from a complete response to complete resistance. Predicting the tumor response to radiotherapy may improve the efficacy of radiotherapy. This review mainly summarizes recent studies about the molecular biomarkers that can predict the response to radiotherapy in rectal cancer. These studies have indicated that the molecular markers involved in the response to radiotherapy mainly include genes related to radiosensitivity, cancer stem cell-related markers, non-coding RNAs (ncRNAs), single-nucleotide polymorphisms (SNPs) and gene methylation, and other factors including carcinoembryonic antigen (CEA) level, anemia, lymphocytes, and signaling pathways. Many of these identified markers are mainly associated with DNA repair, apoptosis, and cell cycle, but some involve unknown cell mechanisms. We speculate that predictors of radiotherapy response may involve combinations of multiple molecular biomarkers that may be useful for the development of individualized therapy for rectal cancer patients.  相似文献   
9.
The parameters governing the crystallisation of paracetamol using various conventional techniques has been extensively studied, however the factors influencing the drug crystallisation using spray drying is not as well understood. The aim of this work was to investigate the crystallisation of an active pharmaceutical ingredient through evaporative crystallisation using a spray dryer to study the physicochemical properties of the drug and to use semi-empirical equations to gain insight into the morphology and particle size of the dried powder. Paracetamol solutions were spray dried at various inlet temperatures ranging from 60 °C to 120 °C and also from a series of inlet feed solvent compositions ranging from 50/50% v/v ethanol/water to 100% ethanol and solid-state characterisation was done. The size and morphology of the dried materials were altered with a change in spray drying parameters, with an increase in inlet temperature leading to an increase in particle Sauter mean diameter (from 3.0 to 4.4 µm) and a decrease in the particle size with an increase in ethanol concentration in the feed (from 4.6 to 4.4 µm) as a result of changes in particle density and atomised droplet size. The morphology of the dried particles consisted of agglomerates of individual crystallites bound together into larger semi-spherical agglomerates with a higher tendency for particles having crystalline ridges to form at higher ethanol concentrations of the feed.  相似文献   
10.
研制一种适合对各种液压孔口或缝隙进行高低温流体力学试验的新型试验装置,运用该装置对具有不同几何参数的液压阻尼孔进行在-50~80℃宽温度范围内的流动特性试验,研究以普通抗磨液压油HM46和低温抗凝减振器油TITAN SAF 5045为工质及其温度变化时对液压阻尼孔流量-压力特性曲线、幂指数和流量系数的影响,研究表明,在低温条件下,液压阻尼孔的流量系数均因油液黏度增大、流动性变差而呈线性下降的趋势,从宏观上看,HM46通过液压阻尼孔时的流动稳定性较差,其对应流量系数的下降幅度明显大于TITAN SAF 5045对应的下降幅度,厚壁小孔流量系数的下降幅度明显大于薄壁小孔对应的下降幅度。研究所获得的新型试验装置、试验数据分析方法和具体理论公式为深入研究和优化现代液压元件在宽温度范围内的动态性能提供新型试验平台与理论基础。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号